FIG S5 Interactions of AcrT with the promoters of ACC/PCC and CS genes. (A) PCR primer design of SACE_0632-0633 (CS genes) for identifying the transcriptional unit. Solid line indicates the DNA fragment across SACE_0632 and SACE_0633 in A226. The negative number represents the overlapping region of these two genes. (B) Determination of transcriptional unit of SACE_0632-0633. Lane M, 5,000 bp DNA ladder; lane G, the PCR products using genomic DNA of A226 as the template; lane C, the PCR products using cDNA library of A226 as the template. (C) PCR primer design of SACE_0018-0026 genes for identifying the transcriptional unit. Solid lines indicate DNA fragments across the adjacent genes in A226. A negative number represents overlapping region of two adjacent 10 genes, and a positive number represents intergenic region of two adjacent genes. (D) Determination of 11 co-transcription of SACE_0018-0026 genes. Here we determined that the real promoter of 12 SACE_0026-0028 genes was located upstream of SACE_0018, not upstream of SACE_0026. Lane M, 13 5,000 bp DNA ladder; lane G, the PCR products using genomic DNA of A226 as the template; lane C, 14 the PCR products using cDNA library of A226 as the template. (E) EMSA with AcrT binding to P₀₀₁₈₋₀₀₂₈ (SACE_0026-0028, ACC genes). (F) EMSA with AcrT binding to P₃₄₀₀ (SACE_3400, ACC or PCC 15 gene). (G) EMSA with AcrT binding to $P_{7038-7039}$ (SACE_7038-7039, ACC and/or PCC genes). (H) 16 17 EMSA with AcrT binding to P₀₆₃₂₋₀₆₃₃ (SACE_0632-0633, CS genes). (I) EMSA with AcrT binding to 18 $P_{3398-3399}$ (SACE_3398-3399, ACC and PCC genes). (J) EMSA with AcrT binding to P_{4237} (SACE_4237, 19 ACC or PCC gene). (K) EMSA with AcrT binding to P₃₂₄₁₋₃₂₄₂ (SACE_3241-3242, ACC and/or PCC 20 genes). (L) EMSA with AcrT binding to P₀₆₄₉ (SACE_0649, CS gene). P₃₂₄₁₋₃₂₄₂ and P₀₆₄₉ were used as 21 the negative controls. Competing assays were performed using 50-fold excessive unlabeled probes or 22 50-fold excessive nonspecific probe poly-dldC.